
Course: Software Verification and Validation, DAD404VV Teacher: Olle Lindeberg Department: IDE, University Of Karlskrona/Ronneby

Unit and System Testing
Report

Prepared for

Olle Lindeberg
Olle.Lindeberg@ide.hk-r.se

IDE, University Of Karlskrona/Ronneby

Prepared by

Christian Bucanac
c.bucanac@computer.org

Software Engineering Student,
University Of Karlskrona/Ronneby

1998-12-05

mailto:Olle.Lindeberg@ide.hk-r.se?subject=http://home5.swipnet.se/~w-51660/documents/Unit_and_System_Testing_Report.pdf
mailto:c.bucanac@computer.org?subject=http://home5.swipnet.se/~w-51660/documents/Unit_and_System_Testing_Report.pdf

Author: Christian Bucanac
Document Name: Unit and System Testing Report.pdf Version: 0.56VV
Create Date: 1998-12-01 Last Modified: 1998-12-05 Printed: 1998-12-05

Page 1 of 7

Contents

Introduction .. 2
Summarization of the main issues .. 2

Overview of Test Techniques.. 2
Partition Testing Does Not Inspire Confidence .. 2
Markov Analysis of Software Specifications ... 3
Integration .. 3
PODS – A Project on Diverse Software... 4
The FREE approach for System Testing.. 4

Discussion of the main issues .. 5
Conclusion... 7
References... 7

Author: Christian Bucanac
Document Name: Unit and System Testing Report.pdf Version: 0.56VV
Create Date: 1998-12-01 Last Modified: 1998-12-05 Printed: 1998-12-05

Page 2 of 7

Introduction

This is the second report in the Software Verification and Validation course, DAD 404 given at the
University of Karlskrona/Ronneby. This report is about Unit and System Testing.

The report summarizes the main issues from the articles found in the reference section. The main issues
are thereafter discussed to see if they support or contradict each other.

This report together with the other student’s reports is used in the Unit and System Testing seminar
held during the course.

Summarization of the main issues

Overview of Test Techniques

There is no best or a set of best methods for testing. Each testing technique tests differently and reveals
different bugs. No method can guarantee to find all bugs. The objective in testing techniques is not
which testing method is best. The objective is to use the testing technique that catches as many bugs as
possible.

This article gives an overview of five different testing techniques:
• Path testing – The objective is to go through enough different paths to demonstrate that a routine’s

actual structure matches it’s intended structure. Theoretically, it could mean that there is infinite
number of test cases. The goal is to select a small but sufficient set of test paths.
There is a special difficulty in testing loops, since they are the major cause of generating infinite
number of test cases. Nestled loops can result in very large test execution times.

• Transaction flow testing – A transaction flowchart is usually used for representing the programs
logical structure. This flowchart is used for transaction flow testing. It is a functional testing from
the user’s point of view. The testing technique is otherwise very similar to path testing.

• Input validation and Syntax testing – Input validation involves validating the input. No garbage
input is allowed into the system. In syntax testing you are checking and validating the syntax of the
input. The input strings are checked against a predefined input format. A string is either accepted
or rejected.

• Logic based testing – A decision table is used in logic based testing. When a combination of
decisions satisfies a rule, an action is taken. Decision tables are easy to implement in code, which
makes logic based testing easy.

• State transition testing – A state transition graph consists of states and transitions. Inputs and
outputs from a state are tested. The difficulty in this testing is that there might be a lot of states and
improper states.

Partition Testing Does Not Inspire Confidence

Partition testing is not a good testing technique for confidence testing. Theoretical and statistical
analysis of partition testing show that partition testing is most useful when you suspect some partition
domains of having high failure probability. Partition testing is most valuable when there are partitions
with narrow suspected areas where failures will most likely occur.

The partition testing method is compared with the random testing method. All comparisons made
favored partition testing. The margin is very small. The random testing is at least 80% as effective as
partition testing. Partition testing is better when classes have higher failure rate than the overall failure
rate. The random testing is better when classes have lower failure rate than the overall failure rate.

Author: Christian Bucanac
Document Name: Unit and System Testing Report.pdf Version: 0.56VV
Create Date: 1998-12-01 Last Modified: 1998-12-05 Printed: 1998-12-05

Page 3 of 7

Random testing is a good alternative for partition testing. It is much cheaper. Running more tests will
outweigh its disadvantage compare to partition testing. The partition testing can be automated, which
makes them more attractive than partition testing.

Markov Analysis of Software Specifications

Markov models can be used for understanding the software easier. The Markov models are based on
specifications. From a model you can obtain any number of statistical test cases. These test cases are
mainly used in the Cleanroom process model for generating random statistical test cases. A random
number generator can easily do the generation of test cases. A test case starts in the start state, through a
sequence of states and ends up in an end state.

The idea with a Markov model is to define probabilities for the usage of the software. There are two
steps in constructing a Markov model. First in the structural step, you define the states and the arcs. In
the next statistical step, you assign the transition probabilities. There are three approaches for the
statistical step:
• Uninformed – Involves assigning uniform probability distribution across the exit arcs for each

state.
• Informed – Used when there are some use-data available, for example a prototype or earlier

version of the software.
• Intended – You hypothetically create runs of the software that you think will be performed by a

careful and reasonable user.

One major advantage of using a Markov model is that analytical descriptions of the set of test cases can
be generated in advance. You can in advance calculate how long the testing will take and what
resources will be needed for performing the test cases.
Usage modeling, like a Markov model, focuses on understanding what the user will do. All cases are
probabilistically modeled in the Markov model.

Integration

Integration testing is done to discover inconsistencies in the interfaces of two elements that are
integrated. The aim is to discover both indirect and direct interface problems.

There are various tactics for integration testing. I present some of them that I think are the most
important ones.
One problem is to determine which element calls another element. Using call trees can solve this
problem. They model every call made by every routine until it reaches a routine that does not call any
other routine.
A data dictionary can be used for determining and documenting data dependencies. It lists the
properties and intended use of all data. Data dependency graphs can be used for illustrating the data
dictionary.
It is very important to specify the interfaces between the elements. There are mainly three things that
needs to be specified: number of parameters, the types of parameters and what data the parameters can
hold. The last one is most important. It makes it possible to check and validate the inputs that come into
the element. Rigid interfaces are important for limiting interface bugs.
Do not allow elements to have multi entry or exit paths. It is better to implement multi entry paths as a
single entry path. The elements should internally direct the single entry path to multi paths. This makes
the integration much easier and less complex.
Integration testing is very difficult in systems that have interrupts. Interrupts increase the number of
possible paths, almost infinitely. Every instruction in every procedure, that is where an interrupt can
occur, can be seen as a possible path. This can be partially solved by reentrant procedures. Reentrant
procedures can be interrupted at any point and can be executed again. It is totally independent from
other procedures.

Author: Christian Bucanac
Document Name: Unit and System Testing Report.pdf Version: 0.56VV
Create Date: 1998-12-01 Last Modified: 1998-12-05 Printed: 1998-12-05

Page 4 of 7

The final goal of integration testing is to have fully functional system. This goal is reached by putting
together elements, doing integration testing and add more elements to the newly integrated element.
This is iterated until you have a fully functional system.

There are mainly two ways of integrating a system:
• Top down – Integration testing is started with the topmost element. Stubs simulate the sub

elements. The stubs are replaced by the real sub elements after the topmost element has been
tested. The procedure is repeated until the whole system is integrated.

• Bottom up – Integration testing is started at the bottommost element. Drivers simulate the upper
elements. The upper elements are replaced by the real upper elements when the bottommost
element has been tested. The procedure is repeated until the whole system is integrated.

Note that there can be more than one topmost or bottommost element.

PODS – A Project on Diverse Software

The purpose of the PODS project was to determine how different software development techniques
affected the reliability of the produced software.
The main objectives were:
• To evaluate the merits of using diverse software (n-version)
• To evaluate the specification language X and its computerized tool SPEX
• To compare the productivity and reliability associated with high level and low level languages.
The second objective was to monitor the software development process with the focus on creation and
detection of faults.

The three programs produced in the project were tested back-to-back. The same input data was given to
all three programs. Thereafter the outputs were compared. If they were different, then there was
something wrong. A majority vote was made for determining the result. When a fault was detected, the
program was corrected and the tests were repeated from the beginning.

The test data was derived in different ways:
• Equivalence partition was used for divide the input data into a number of finite equivalence

classes.
• Boundary values analysis was used to generate test cases for boundary values of the input and

output equivalence classes.
• Decision tables were used to calculate possible combinations of input conditions, output conditions

and internal program states.

The conclusions from the project are:
• Diverse implementation is effective in reducing failure rate.
• Diverse implementation provides an economic way of performing large number of tests. Diverse

implementations make it possible to perform automatic testing with randomly generated inputs and
to compare the outputs.

• Diverse implementation did not eliminate all common faults.
• The cost of developing three diverse programs was at least twice as much as developing a single

program.

The FREE approach for System Testing

Uses cases are used for developing a system test plan. A use case is a sequence of external inputs to a
system. This sequence accomplishes a task from a user’s point of view. A use case is a dialog between
the system and the actor, which may be a human being or another system.

Author: Christian Bucanac
Document Name: Unit and System Testing Report.pdf Version: 0.56VV
Create Date: 1998-12-01 Last Modified: 1998-12-05 Printed: 1998-12-05

Page 5 of 7

The system test cases are derived from the functional specification of the system. It may be a user
manual. There are four levels of system testing strategies that can be applied:
• Testing by poking around – There is no formal testing plan. The development team demonstrates

the functionality of the system to a subjective degree of satisfaction.
• Functional compliance – A formal test plan is developed for all use cases. This testing level

requires use case and event trace coverage. All use case tests must pass to achieve functional
compliance.

• Reliability optimization – This level requires that the functional compliance testing has been done
according to an operational profile. The use cases are ranked according to relative frequency. This
maximizes the reliability.

• Integrity verification – This level requires that the reliability optimization testing has demonstrated
thread coverage. This level establishes a measure of system test completeness.

An operational file specifies relative frequencies of a use case. It consists of the operations that
compromise all the use cases in a system and the relative frequency of each operation (a use case
consists of operations).

Discussion of the main issues

The article “Partition Testing Does Not Inspire Confidence” says “Our main point has been to call into
question the common wisdom that confidence in software is obtained by vigorously seeking failures
and when a variety of methods finds no more failures concluding that the software will prove reliable in
use”. This supports the article “Overview of Test Techniques”. It says that there is no best or a set of
best methods for testing. No method can guarantee to find all bugs. The objective in testing techniques
is not which testing method is best. The objective is to use the testing technique that catches as many
bugs as possible.

Transaction flow testing and use case testing are pretty much the same. Both techniques can use
Markov models. These two testing techniques are more effective than for example path testing. The
testing is done on a much higher level, which cover several paths. You get the same failures as a user
would get. The problem is that these two testing techniques may be too effective. You might find
several faults at the same time. It might be hard to trace the faults and find out what went wrong.
The difference is that use case testing is more focused on the frequency and primarily tests the use cases
that are most frequently used. Transaction flow testing is more of a use case coverage testing.

Markov models are very useful in transaction flow testing, state transition testing and use case testing.
The problem in transaction flow testing and state transition testing is that there are too many test cases
to execute if you are to cover all transitions. It is impractical to execute all test cases. You would need
to select a smaller amount of test cases that tests the key functionality. A Markov model can be used for
this purpose.
The Markov model is mainly used for modeling usage of software. It focuses on understanding what
the user will do. A Markov model can therefore be used in use case testing to generate operation
profiles for software. The Markov model can model the frequency of operations in a use case. This is
very useful when you generate operation profiles.

Specifying interfaces between elements is very important. We discovered this in the Humphrey
project7. The head of the department in the project told us that this was the most important and critical
part in the project. It was important to have a well-defined interface between each protocol layer. We
listen to the advice and defined the interfaces in detail. Each interface had a detailed specification of the
number of parameters, the types of parameters and the data that the parameters contained.

In integration testing it is important to check the input data to see if it is acceptable or not. The input
validation and syntax testing technique can be used in the integration. This technique can be used to
both check the data between large elements like in integration or in small single methods. I think it is
impractical to use input validation and syntax testing to check each single parameter in a method.

Author: Christian Bucanac
Document Name: Unit and System Testing Report.pdf Version: 0.56VV
Create Date: 1998-12-01 Last Modified: 1998-12-05 Printed: 1998-12-05

Page 6 of 7

The integration article says “An element cannot be considered integrated until every path in its real,
dynamic, call graph has been explored under test”. The article “Overview of Test Techniques” says the
same thing about path testing. “The path testing is not complete until every element in the path tree has
been called once and all possible callers have called every element”.
In path testing it is not possible to test every path of execution, since they may be too many. There is
the same problem in integration testing. The problem of executing a small amount of test cases is that
you have not covered all paths of execution.

The PODS project used several of the testing techniques described in the other articles. For example:
• The systematic tests in the PODS project, the tests were generated to test the program for correct

operation with both valid and invalid input data. The PODS project used the input validation and
syntax testing technique as described in the article “Overview of Test Techniques”.

• Boundary values analysis was used to generate test cases for boundary values of the input and
output equivalence classes. Boundary value analysis is done by checking input values. The
technique used here is the same as the syntax checking technique described in the article
“Overview of Test Techniques”.

• Decision tables were used to calculate possible combinations of input conditions, output conditions
and internal program states. Using decision tables to calculate the possible combinations is a part
of the logic based testing technique described in the “Overview of Test Techniques” article. This is
a very easy technique, since decision tables are easy to implemented in code.

• Tests were defined to check that the values were correctly converted and that faulty input values
were recognized. This garbage in technique is described in the “Overview of Testing Techniques”
article. It is done by the syntax testing technique.

• The CERL group did not have any specification language like the other two groups. They tried to
raise the customer requirement specification to a higher level of abstraction by using state
transition diagrams. A Markov model does this easily. It is described in the article “Markov
Analysis of Software Specifications”.

If you compare the article “The FREE approach for System Testing” with “Markov Analysis of
Software Specifications” you see many similarities:
• A Markov model is made out of specifications. The system test cases in the FREE approach are

derived from the functional specification.
• The Markov model supports use case modeling by defining states and arcs. The FREE approach

uses use cases for testing.
• The Markov model consists of a statistical step where probabilities are assigned to the transitions in

the model. This is exactly what is needed for generating operational profiles in the FREE approach.
An operational profile models different types of users by using different probabilities on the arcs
and by choosing different ways/arcs from the start state to the end state.

• From a Markov model you can obtain any number of statistical test cases. Statistical testing on use
cases is exactly what the FREE approach does. The article “The FREE approach for System
Testing” says “We test most-likely use cases first because the most frequent used operations have
the greatest impact on operational reliability. If a heavily used operation is buggy, the system will
fail frequently. If a rarely used operation is buggy, the system will fail infrequently. Selecting tests
according to usage frequency rapidly decreases failure frequency”.

• A Markov model is usage modeling that focuses on understanding what the user will do. All cases
are probabilistically modeled. It is exactly the same in the FREE approach.

Beizer contradicts himself. In the article “Overview of Test Techniques” he says that nestled loops are a
nightmare. They produce infinitely number of paths that would be needed to test if coverage was to be
achieved.
In the article “Integration” he says in the interrupts section “Every instruction in every routine can be
considered as if it is followed by a jump to every possible routine that can interrupt it”. Imagine of
having a program with nestled loops in a system that has interrupts. In this case you will have more
infinite paths to cover than in a system without interrupts.

Author: Christian Bucanac
Document Name: Unit and System Testing Report.pdf Version: 0.56VV
Create Date: 1998-12-01 Last Modified: 1998-12-05 Printed: 1998-12-05

Page 7 of 7

Conclusion

I could not find many issues that contradict each other. The articles support each other pretty much. The
difference between the articles is that the same basic technique, the state-transition trace net, is used on
different levels of testing.

The techniques in the articles are based on the same foundation. The difference is on what level or in
what way a technique is used. The common foundation is that all techniques rest on a state-transition
trace net. For example:
• Path testing – A path can by an if or switch statement change state and go into another path.
• Logic based testing – Depending on which combination of decisions is satisfied the program uses a

certain rule to execute an action and enter another state.
• The Markov model, state transition testing, transaction flow testing and use case testing all rely

upon a net of states and arcs. A use case is a path of operations throughout such a net. It is the same
for the transaction flow. For each transaction there are a number of operations that must be
performed.

References

1. Overview of Test Techniques
Beizer
Software System Testing and Quality Assurance

2. Partition Testing Does Not Inspire Confidence
Dick Hamlet, Ross Taylor
IEEE Transactions On Software Engineering, Vol. 16, No. 12, December 1990

3. Markov Analysis of Software Specifications
James A. Whittaker, J. H. Poore
ACM Transactions on Software Engineering and Methodology, Vol. 2, No.1, January 1993

4. Integration
Beizer
Software System Testing and Quality Assurance

5. PODS – A Project on Diverse Software
Peter G. Bishop, David G. Esp, Mel Barnes, Peter Humphreys, Gustav Dahll, Jaakko Lahti
IEEE Transactions On Software Engineering, Vol. SE-12, No. 9, September 1986

6. The FREE approach for System Testing
Robert V Binder
Object Magazine, February 1996

7. Humphrey, Small Software Engineering Project, Spring 1998
A course comprising 10 study points which at the time of writing is part of the software
engineering program at the University of Karlskrona/Ronneby.
http://apollo.rsn.hk-r.se/~humphrey

http://apollo.rsn.hk-r.se/~humphrey

